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tree incorporating the Fåhraeus-Lindqvist effect

Abstract
Arterial tree models have been successfully used to obtain a better
understanding of all aspects hemodynamics of clinically relevant
regions of the human body in order to diagnosis and applications
in surgical planning. Basically, the models can be classified into:
anatomical, lumped parameter, fractal and optimized. This work
focuses on the generation of 3D optimized models based on Con-
structive Constrained Optimization (CCO) method equipped with
a model to account for the Fåhraeus-Lindqvist effect, which in-
dicates that the blood viscosity depends on the diameter of the
vessel and discharge hematocrit through a nonlinear function. In
this work, data morphometrics from models are compared with
those of real coronary trees and the effective admittance of the
models is investigated.
Keywords: Coronary arterial tree. Fåhraeus-Lindqvist effect.
Computational modeling. Effective admittance.

Resumo
Modelos de árvores arteriais têm sido utilizados com sucesso para
obter uma melhor compreensão de todos os aspectos relaciona-
dos à hemodinâmica de regiões do corpo humano, passando pelo
diagnóstico e com aplicações no planejamento cirúrgico. Basi-
camente, os modelos podem ser classificados em: anatômico,
parâmetro condensado, fractal e otimizado. Neste trabalho,
foca-se na geração de modelos otimizados 3D baseados no
método CCO (Constructive Constrained Optimization) equipado
com o efeito Fåhraeus-Lindqvist, o qual indica que a viscosi-
dade sanguı́nea depende do diâmetro do vaso e da descarga de
hematócrito através de uma função não linear. Neste trabalho, da-
dos morfométricos dos modelos são comparados com aqueles de
árvores coronarianas reais e a admitância efetiva dos modelos é
investigada.
Palavras-chave: Árvore arterial coronariana. Efeito Fåhraeus-
Lindqvist. Modelo computacional. Admitância efetiva.



1 Introduction
Arterial trees serve to the purpose of conveying blood to all sites of a tissue. Hemodynamic

simulation studies use computational models of arterial trees as their geometrical substrate. These
studies have been used to gain a better understanding of all aspects related to blood flow, from
wave propagation and analysis of pressure pulse can be used for diagnosis and surgical plan-
ning applications. To date these simulations can employ one of following class of arterial tree
models: lumped parameter models (MATES; KLOCKE; CANTY JR, 1988), anatomical mo-
dels (WATANABE; BLANCO; FEIJÓO, 2013), fractal models (VAN BEEK; ROGER; BAS-
SINGTHWAIGHTE, 1989; YANG; WANG, 2013) and optimized (SCHREINER; BUXBAUM,
1993; KARCH et al., 1999; SCHWEN et al., 2015; BRITO, 2016).

In particular, this work is interested in optimized models generated by method of Constrained
Constructive Optimization (CCO) (SCHREINER; BUXBAUM, 1993; KARCH et al., 1999;
QUEIROZ, 2013; BRITO, 2016). Arterial tree models generated by CCO are able to mimic
important properties of real arterial trees, such as segment radii, branching angle statistics and
pressure profiles. However, the CCO method is not able to take into account the Fåhraeus-
Lindqvist effect during the generation of the models, which is an effect where the viscosity of
the blood changes with the diameter of the vessel and discharge hematocrit it travels through
(FÅHRAEUS; LINDQVIST, 1931). For example, there is a decrease of viscosity as the vessel’s
diameter decreases when the vessel diameter is between 10 and 300 micrometers.

In this context, the purpose of this work is to provide an algorithm based on CCO method that
generates arterial tree models considering the Fåhraeus-Lindqvist effect. The models obtained
by the algorithm are compared with morphometric data of real coronary arterial trees. Detailed
investigation of the algorithm can be seen in (BRITO, 2016). Furthermore, the root effective
admittance of models was calculated in order to investigate the impact of the number of terminal
segments of models in this dynamic property. It is obtained using an iterative formula based on
theoretical result of Duan and Zamir (DUAN; ZAMIR, 1995).

It is important inform that preliminary results were presented recently at ERMAC 2017
(BRITO et al., 2017). In this actual work are described: (i) an algorithm that describes an itera-
tive process to calculate the blood viscosity through a nonlinear function, (ii) it provides results
of models generated considering linear and nonlinear blood viscosities, and (iii) it depicts the
root effective admittance of arterial trees models.

The remainder of this paper is organized as follows. In Section 2, the algorithm proposed
based on CCO method is described. In Section 3, it is presented the procedure to determine
the root effective admittance. In Section 4, results obtained using the algorithm developed are
presented. Section 5 contains our conclusion and discusses the future direction of this work.

2 The algorithm based on CCO
The algorithm here proposed is based on the assumptions and constraints listed below (SCHREI-

NER; BUXBAUM, 1993; KARCH et al., 1999; QUEIROZ, 2013):

• The concept associated with the construction is to minimize the total intravascular volume

V = π

Ktot

∑
i=1

lir2
i , (1)

 

BRITO, P. F. de. et al. Automatic construction of 3D models of arterial tree incorporating the Fahraeus-Lindqvist effect. C.Q.D.– Revista Eletrônica Paulista 

de Matemática , Bauru, v. 10, p. 38-49, dez. 2017. Edição Ermac. 

DOI: 10.21167/cqdvol10ermac201723169664pfbldmmrwsrabq3849   Disponível em: http://www.fc.unesp.br/#!/departamentos/matematica/revista-cqd/ 

 39



where li and ri are the length and radius of the segment i, Ktot is the number of segments of
the tree in growth stage;

• the tree model is generated on a fixed 3D domain non necessarily convex Ωper f that repre-
sents an organ;

• the proximal localization xprox of the root segment (feeding artery) is known and fixed in
the boundary of the domain at the beginning of the simulation;

• the arterial tree is modeled as a dichotomously branching (binary) system of straight cylin-
drical tubes (vessel segments);

• the model tree starts at the root segment (main feeding artery) and it is truncated in the
form of terminal segments on prearteriolar level;

• the model tree should take up the space of the perfusion domain as homogeneously as
possible without intersection of segments;

• the blood is modeled as an incompressible, homogeneous Newtonian fluid at steady state
and laminar flow conditions (BATCHELOR, 2000);

• at bifurcations the radii of parent (rp) and daughter segments (rdl , rdr) are forced to e-
xactly fulfill a bifurcation law derived from real coronary trees (ZAMIR, 1988):

rγ
p = rγ

dl + rγ

dr, (2)

where γ is a constant exponent with ranging between 2.55 and 3, governing the shrinkeage
of radii across bifurcations;

• hydrodynamic resistance R of each segment of the tree is assumed to follow Poiseuille’s
law

R =

(
8ηi

π

)
li
r4

i
, (3)

where ηi is the blood viscosity. The CCO method adopts ηi = 3.6 cP (constant). In this
work the blood viscosity ηi is described as a non-linear function given by (PRIES et al.,
1990):

ηi = ηp

[
1+(η0.45−1)

(
di

di−1.1

)2
](

di

di−1.1

)2

, (4)

where di is the diameter of the segment i, ηp = 1.1245 cP is the plasma viscosity, and η0.45
is the apparent viscosity of the plasma for a discharge hematocrit of 0.45 given by

η0.45 = 6exp(−0.085di)+3.2−2.44exp(−0.06d0.645
i ); (5)

• the pressure drop ∆ps along each segment is given by

∆ps = RQ, (6)

where Q is the flow through segment;
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• each terminal segment supplies an identical and equal amount of blood flow Qterm into the
microcirculatory network, which is not modeled in detail;

• the overall pressure drop of the model is given by

∆p = pper f − pterm, (7)

where pper f is the perfusion pressure at the inlet of the root segment, pterm is the pressure
at the outlet of all the terminal segments;

• the radius of the root segment riroot is scaled during the growth of the tree model by CCO
method as follows:

riroot =

[
R∗sub,iroot

Qper f

∆p

]
, (8)

where R∗sub,iroot denotes the reduced hydrodynamic resistance of the whole tree (see de-
tails in (KARCH et al., 1999)) and Qper f = ktermQterm which kterm denotes the number of
terminal segments to be supplied.

The algorithm of tree generation based on CCO method has previously been described in
detail by BRITO (2016). The generation of the model starts by planting the root segment (iroot)
with its proximal end xprox fixed at the perfusion domain Ωper f and the distal xinew selected ran-
domly within this domain. If this position is not too close to xprox, xinew is connected to xprox,
resulting in a root segment length (liroot). The radius riroot of the root segment is such that the
hydrodynamic resistance R∗sub,iroot yields the flow Qper f = Qterm through one terminal segment,

i.e., kterm = 1. At this moment, R∗sub,iroot =
8ηi
π

liroot and ηi assumes 3.6 cP to calculate radius
riroot . In following, ηi is updated using Eq. (4) with di = 2riroot and again the radius riroot is com-
puted. The iterative procedure explained above is repeated until convergence is achieved with
precision ε = |rn+1

iroot − rn
iroot |< 10−5 for example, where n denotates iterations. The convergence

denotes that the radius of the root segment does not change significantly between two iterations,
consequently the blood viscosity was adequately updated in each segment. Related to the stop-
ping criterion based on the number of iterations, the algorithm is terminated when the number of
iterations reaches the maximum number of iterations, which have the value 10 in this work.

Given a tree with kterm terminal segments, the stepwise growing of the tree is as follows.
First, the location xinew for a new terminal is selected from a pseudorandom number sequence,
uniformly distributed inside the perfusion domain. The prospective location xinew is accepted
as a candidate for a new terminal site only if xinew satisfies a distance criterion (SCHREINER;
BUXBAUM, 1993).

Since xinew has been accepted as a distal end of a new terminal segment, it is temporarily
connected to each of the neighboring segments, one after the other. Connecting the new terminal
segment to a preexisting segment, consequently cause violation in the boundary condition regard-
ing the terminal flows. In order to return the proper terminal flows, the flow resistance of the tree
must be adjusted for each temporary connection. This can only be performed by rescaling of the
segments’ radii (KARCH et al., 1999) equipped with an iterative procedure that estimates and
corrects the nonlinear viscosity in each segment of the tree. This iterative procedure is described
in the Algorithm 2.

The bifurcation site resulting in each temporary connection is optimized in order to minimize
the Eq. (1), as explained in Section 2.1, and dissolved again. After assessing all possible connec-
tions in the neighborhood of xinew, the connection that provided the lowest optimization target is
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adopted as permanent for the new terminal site xinew. Thus, the tree is grown to kterm+1 terminal
segments. The process of growing the tree summarized above is repeated until kterm = Nterm, i.e.,
the preset number of terminals Nterm is achieved. The steps described previously are systematized
in the Algorithm 1.

2.1 Optimization of the bifurcation position
This stage of the algorithm determines a position for new bifurcation in order to minimize the

Eq. (1). Firstly, the distal position of a new terminal segment xinew is connected in the midpoint
of a existent segment of the tree resulting in a new bifurcation. This bifurcation position should
be modified in order to minimize the total intravascular volume. The method adopted here was
developed by (QUEIROZ, 2013).

Suppose the distal position of a new terminal segment xinew = (x3,y3,z3) is connected in
the midpoint of segment icon with distal position xD = (x2,y2,z2) and proximal position xP =
(x1,y1,z1) (see Fig. 1). These points form the bifurcation plane containing optimum bifurcation
(KARCH et al., 1999). To find this optimum position xibi f in triangle ∆1 was utilized isopara-
metric mapping. A point G = (ε,κ) in triangle ∆2 can be represented as a point xibi f = (x,y,z) in
triangle ∆1 by equations:

x =
3

∑
i=1

φi(ε,κ)xi, y =
3

∑
i=1

φi(ε,κ)yi, z =
3

∑
i=1

φi(ε,κ)zi, (9)

where
φ1(ε,κ) = 1− ε−κ, φ2(ε,κ) = ε, and φ3(ε,κ) = κ. (10)

Note that the vertices xP, xD and xinew of ∆1 correspond the vertices G1, G2, G3 of triangle ∆2,
respectively.

The triangle ∆2 is partitioned by a regular mesh with spacing δ = 1
Ne

in directions κ and
ε , where Ne is the previously selected parameter. In Figure 1, Ne = 6. The nodes of mesh are
represented in triangle ∆1 as xibi f using Eq. (9) which are candidates for optimum bifurcation.

Given Npts positions xibi f = (x,y,z) in triangle ∆1, each of them is used to create a temporary
bifurcation. With each new bifurcation, the cost function (1) is computed. Finally, the position
xibi f that resulted in the lowest value of the cost function is considered optimal for connecting
xinew to the segment icon.

Figure 1: Example of determination the site bifurcation when adding a terminal segment.
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Algorithm 1: Automatic generation of arterial tree models inspired in the CCO method.
Data: Ωper f , xprox, Qper f , Nterm, γ .

1 Fix the proximal position xprox of the root segment into domain Ωper f ;
2 repeat
3 Generate the distal position xinew for the root segment into domain Ωper f ;
4 Distance criterion: check if this position is not too close to xprox;
5 until (distance criterion is met);
6 Connect xinew to xprox (planting the root segment);
7 Update the viscosity of root segment through iterative procedure (Algorithm 2);
8 kterm← 1;
9 while (kterm < Nterm) do

10 repeat
11 Generate the distal position xinew for a new terminal segment;
12 Distance criterion: check if this position is not too close to any of the existing

segments;
13 until (distance criterion is met);
14 Obtain the neighboring segments Ncon of xinew for temporary connection;
15 for j← 1 to Ncon do
16 Connect xinew to the midpoint xibi f of segment j;
17 Update the viscosity of segment through iterative procedure (Algorithm 2);
18 Optimize the bifurcation position xibi f (see details in Section 2.1);
19 Perform restriction checks (e.g. segment intersection, segments traversing

forbidden domains);
20 Save value of target function, position xibi f and results of check in line j of the

Connection Evaluation Table (CET);
21 Remove the bifurcation created;

22 Restrict CET to allowed connections: CETv;
23 if (CETv is not an empty set) then
24 Find optimal connection jopt from CETv (structural optimization);
25 Make connection from xinew to jopt permanent;
26 Update the viscosity of segment through iterative procedure;
27 kterm← kterm +1;

28 else
29 Refuse the position xinew;

30 Return the quantities calculated (length, radius, resistance, pressure drop, blood flow);
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Algorithm 2: Iterative procedure (non-linear viscosity)
Data: Arterial tree with Kterm terminal segments.

1 Ktot = 2Kterm−1;
2 Obtain the set T = {T1,T2, . . . ,TKterm} whose elements are the terminal segments;
3 repeat
4 for j = 1 to Kterm do
5 for i = 1 to Ktot do
6 if the segment i is same to segment iroot then
7 Calculate the radius of the segment iroot by Eq. (8);
8 diroot = 2riroot ;
9 Update the viscosity ηiroot = η(diroot) using Eq. (4);

10 else
11 Calculate the radius of the segment i (see (KARCH et al., 1999));
12 di = 2ri;
13 Update the viscosity ηi = η(di) using Eq. (4);

14 for i = Tj to iroot and for all segment in this path do
15 if the segment i is same to segment iroot then
16 Calculate the radius of the segment iroot by Eq. (8);

17 else
18 Calculate the radius of the segment i (see (KARCH et al., 1999));

19 until the convergence criterion is reached;

3 Procedure to determine the root effective admittance
The effective admittance of an arterial tree model is measure of its dynamic performance. It

represents the extent to which a pressure or flow wave entering the tree would be admitted (ZA-
MIR, 2000). In following, the procedure to determine the root effective admittance is described
in tree steps (DUAN; ZAMIR, 1995):

• Step 1: the characteristic admittance Yi of each segment i in the model is calculated from
the following relation

Yi =
Ai

ρci
, (11)

where Ai is the cross-sectional area of the segment i, ρ is the density of the fluid, and ci is
the wave speed in the segment i given by

ci =

√
Ehi

ρdi
, (12)

where E is the Young’s modulus, di is a diameter of segment i and hi is the wall thickness
of the segment i.

• Step 2: it is considered that effective admittance Ye
term of each terminal segment term is

identical to their characteristic admittances Yterm.
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• Step 3: the root effective admittance Y iroot
e is obtained marching backward along the tree

structure and determining the effective admittance of each segment i

Ye
i = Yi

[
Ye

dl +Ye
dr + jYi tan(ω li

ci
)

Yi + j(Ye
dl +Ye

dr) tan(ω li
ci
)

]
, (13)

where j is the imaginary unit, li is the length of segment i, ω = 2π f is the angular fre-
quency, f is the frequency, and Ye

dl and Ye
dr are effective admittance of daugthers left (dl)

and right (dr) of segment i, respectively.

In Eq. (13), one can see that the effective admittance depends on frequency. For this reason it
is necessary to obtain values of effective admittance of an arterial tree model at different frequen-
cies, to produce a so called frequency spectrum, which is a dynamic profile of the tree (ZAMIR,
2000).

4 Results
In this section results obtained with the Algorithms 1 and 2 are presented. These algorithms

were implemented using the programming language ANSI C. The computer simulations were
performed in a Dell laptop with processor Intel Core i5, memory 8 GB and hard drive 1 TB.

4.1 Comparison with real coronary arterial trees
For morphometric comparison with real coronary arterial trees, the Algorithm 1 was applied

to generate arterial trees with 250 terminal segments (499 in total) in order to represent the tree
of the left anterior descending (LAD) coronary artery.

The arterial tree models were generated under the following conditions (KARCH et al., 1999):
perfusion pressure pper f = 100 mmHg, terminal pressure pterm = 72 mmHg, total perfusion flow
Qper f = 500 mL/min, terminal flows Qterm = 2 mL/min, bifurcation exponent γ = 3, spherical
volume Ωper f = 100 cm3 representing tissue to be perfused (LAD region). Two case studies were
performed using different viscosities: linear η = 3.6 cP and nonlinear given by Eq. (4).

For each simulation, ten replicates of the tree with 250 terminal segments were generated
with the same predefined parameters. Each tree was generated using a different sequence of
pseudorandom numbers for casting the distal ends of its terminal segments.

Figure 2 shows an arterial tree models generated with viscosity given by Eq (4). Note that the
segments with larger radius have blood viscosity (Eq. (4)) near to 3.6 cP.

Figure 3 displays the mean diameter and standard deviation of this mean diameter (SDM) of
all vessel segments at a certain bifurcation level, defined as the number of proximal bifurcations
of a segment. This figure also shows the mean length and standard deviation of this mean length
(SDM). Diamonds and triangles denote measurements from corrosion casts of the coronary net-
works of two human hearts (ZAMIR; CHEE, 1987). One can see in Fig. 3 that the results
produced by the models are consistent with the experimental data (ZAMIR; CHEE, 1987). It
was observed that the choice of blood viscosity did not significantly affect the distribution of the
diameters and lengths of the segments.
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(a) Nterm = 250 (b) Nterm = 250

(c) Nterm = 4000 (d) Nterm = 4000

Figure 2: Visual representation of the models of an arterial tree with 250 and 4000 terminal
segments.

4.2 Determining the root effective admittance of arterial tree models
In order to compare the root effective admittance of differents models of arterials trees, models

were generated with 250, 500, 1000 and 2000 terminals segments using the Algorithm 1 and
under the same conditions adopted in Section 4.1.

The following parameters were used to determine the root effective admittance Y iroot
e of the

models (DUAN; ZAMIR, 1995): the wall thickness of vessel hi = 0.05di, Young’s modulus
E = 1.0× 107 dynes/cm2, density of fluid ρ = 1055 kg/m3 and frequency f varying of 0 Hz
until 2000 Hz with increasing of 100 Hz.

Figure 4 shows the root effective admittance Y iroot
e in function of the angular frequency for

each model generated with linear (continuous line) and nonlinear (dashed line) viscosities. From
this figure that depicts the admittance spectrum of the models, one can be observe that both the
number of terminals and the viscosity influenced the root effective admittance. In particular, the
increase in the number of terminals caused an increase in root effective admittance.
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(a) constant viscosity 3.6 cP. (b) variable viscosity given by Eq. (4).

(c) constant viscosity 3.6 cP. (d) variable viscosity given by Eq. (4).

Figure 3: Morphometric comparison between tree models and real left coronary arterial trees of
two humans.

Figure 4: The root effective admittance of arterials trees with 250, 500, 1000 and 2000 terminals
segments. The dashed line represented arterial tree models generated with variable viscosity
given by Eq (4), and the continuous line represented models obtained with constant viscosity 3.6
cP.
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5 Conclusion and future work

In this work, an algorithm based on CCO method is presented, which is capable of gene-
rating tree models taking into account the Fåhraeus-Lindqvist effect. These arterial tree models
are in agreement with real vascular trees regarding morphometric parameter. In addition, the
simulations presented here have the purpose to complement which had been done in Karch et
al. (1999) using only constant viscosity. This work also showed results involving root effective
admittance of the arterial tree models.

It should be emphasized that the described algorithm can be improved. In future work, we
plan to incorporate elastic representation and collateralization of the vessels. Calculate the ve-
locity (Eq. (12)) using a relationship between Young’s modulus, wall thickness and radius of
segment described by an exponential equation (OLUFSEN el at., 2000).
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