

ISSN 2316-9664 Volume 9, jul. 2017

Fernando da Costa Gomes Instituto Federal do Maranhão-Campus Pinheiro fernando.costa@ifma.edu.br

Uma demonstração da conjectura de Chen no espaço Euclidiano E^4

A proof of Chen conjecture in the Euclidean space E^4 .

Resumo

Seja M^2 uma superfície compacta bidimensional imersa no m-espaço Euclidiano E^m . A curvatura média total de M^2 é definida como sendo a integral $\int_{M^2} H^2 dV$, onde H e dV denotam, respectivamente, a curvatura média e o elemento de volume da superfície M^2 . Um problema interessante é encontrar o melhor limite inferior desta integral em termos dos invariantes geométricos ou topológicos de M^2 . Muitos resultados tem sido obtidos acerca desse problema. Bang-Yen Chen (1981, p. 515) conjecturou que se M^2 é uma superfície bidimensional compacta de gênero $g \geq 1$ imersa no m-espaço Euclidiano E^m , então a integral do quadrado de sua curvatura média é pelo menos $2\pi^2$. Neste trabalho, demonstraremos que essa conjectura é válida no caso do espaço Euclidiano 4-dimensional E^4 .

Palavras-chave: Conjectura de Chen. Energia de Willmore. Números de Betti.

Abstract

Let M^2 be a two dimensional compact surface immersed in the Euclidean m-space E^m . The total mean curvature of M^2 is defined to be the integral $\int_{M^2} H^2 dV$, where H and dV denote, respectively, the mean curvature and the volume element of the surface M^2 . An interesting problem is to find the best possible lower bound of this integral in terms of the geometric or topologic invariants of M^2 . There have been many results obtained on this problem. Bang-Yen Chen (1981, p. 515) conjectured that if M^2 is a two dimensional compact surface of genus $g \geq 1$ immersed in the Euclidean m-space E^m , so the integral of the square of the mean curvature is at least 2π . In this paper we prove this conjecture is true in the case of the Euclidean 4-space E^4 .

Keywords: Chen conjecture. Willmore's energy. Betti numbers.

1 Introdução

Na teoria clássica de superfícies fechadas (compactas e sem bordo) imersas em um espaço Euclidiano m-dimensional E^m , os dois invariantes geométricos básicos são a curvatura Gaussiana K e a curvatura média H. A curvatura Gaussiana é um conceito intrínseco e sua integral nos fornece a conhecida fórmula de Gauss-Bonnet

$$\int_{M^2} K \ dV = 2\pi \chi(M^2),$$

onde dV e $\chi(M^2)$ denotam, respectivamente, o elemento de volume e a característica de Euler da superfície M^2 .

Segundo Willmore (1968), para uma 2-superfície M^2 imersa em E^m , a integral do quadrado da curvatura média, conhecida como a *energia de Willmore*, satisfaz

$$W(M^2) := \int_{M^2} H^2 \ge 4\pi,$$

onde a igualdade ocorre se, e somente se, M^2 é uma 2-esfera em um 3-espaço afim. A energia de Willmore aparece naturalmente em alguns contextos físicos. Por exemplo, na Biomatemática ela aparece no modelo de Helfrich (1973) como um dos termos que contribuem para a energia das membranas celulares.

Chen (1979) mostrou que se M^2 é uma superfície compacta flat imersa em E^4 , então

$$W(M^2) \ge 2\pi^2.$$

Uma extensão desse resultado para o caso m-dimensional ($m \ge 4$) foi obtida pelo próprio Chen em 1981 e, além disso, foi proposta a seguinte conjectura.

Conjectura 1 Toda 2-superfície compacta M^2 de gênero $g \ge 1$ em E^m satisfaz

$$W(M^2) \ge 2\pi^2.$$

O principal objetivo deste trabalho é demonstrar que a conjectura acima é válida para o caso em que m=4. Mais precisamente, demonstraremos o seguinte teorema.

Teorema 2 Seja M^2 uma 2-superfície compacta de gênero $g \ge 1$ imersa no espaço Euclidiano E^4 . Então

$$W(M^2) \ge 2\pi^2.$$

2 Método do referencial móvel

Sejam U um aberto do \mathbb{R}^n e (e_1, e_2, \dots, e_n) campos diferenciáveis de vetores definidos em U de tal modo que, para todo $q \in U$, se tenha $\langle e_i, e_j \rangle_q = \delta_{ij}$, onde $\delta_{ij} = 0$ se $i \neq j$ e $\delta_{ij} = 1$ se i = j, com $i, j = 1, \dots, n$. Um tal conjunto de campo de vetores é chamado um *referencial ortonormal móvel* em U e será denotado por $\{e_i\}$. Doravante, omitiremos os adjetivos ortonormal e móvel, isto é, todos os referenciais serão ortonormais.

A partir do referencial $\{e_i\}$ podemos definir formas diferenciais lineares $\omega_1, \ldots, \omega_n$ pela condição $\omega_i(e_j) = \delta_{ij}$; em outras palavras, em cada ponto $q \in U$, a base $\{(\omega_i)_q\}$ é a base

dual de $\{(e_i)_q\}$. O conjunto das formas diferenciais $\{\omega_i\}$ é chamado o *correferencial* associado ao referencial $\{e_i\}$.

Cada campo e_i é uma aplicação diferenciável $e_i:U\subset\mathbb{R}^n\to\mathbb{R}^n$. A diferencial $(de_i)_q:\mathbb{R}^n\to\mathbb{R}^n$, em $q\in U$, é uma aplicação linear. Portanto, para todo $v\in\mathbb{R}^n$, podemos escrever

$$(de_i)_q(v) = \sum_j (\omega_{ij})_q(v) e_j.$$

As expressões $(\omega_{ij})_q(v)$, acima definidas, dependem linearmente de v e diferenciavelmente de q. Portanto, $(\omega_{ij})_q$ é uma forma linear em \mathbb{R}^n . Como e_i é um campo diferenciável, então ω_{ij} é uma forma diferenciável linear. Com estes significados em mente, escreveremos

$$de_i = \sum_j \omega_{ij} \ e_j \tag{1}$$

como definição das formas ω_{ij} , que são chamadas formas de conexão do \mathbb{R}^n no referencial $\{e_i\}$. Diferenciando a expressão $\langle e_i, e_j \rangle_q = \delta_{ij}$, obtemos

$$0 = \langle de_i, e_j \rangle_q + \langle e_i, de_j \rangle_q = \omega_{ij} + \omega_{ji},$$

isto é, as formas de conexão ω_{ij} são antissimétricas nos índices i,j.

Teorema 3 (Equações de Estrutura do \mathbb{R}^n) Seja $\{e_i\}$ um referencial em um aberto $U \subset \mathbb{R}^n$. Sejam $\{\omega_i\}$ o correferencial associado a $\{e_i\}$ e ω_{ij} as formas de conexão de U no referencial e_i . Então,

$$d\omega_i = \sum_k \omega_k \wedge \omega_{ki},\tag{2}$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj}, \quad k = 1, \dots, n.$$
(3)

Demonstração: Sejam $a_1 = (1, 0, ..., 0), \ a_2 = (0, 1, 0, ..., 0), ..., a_n = (0, 0, ..., 0, 1)$ a base canônica do \mathbb{R}^n e $x_i : U \to \mathbb{R}$ a função que faz corresponder a cada ponto $q = (x_1, ..., x_n) \in U$ a sua *i*-ésima coordenada. Então, dx_i é uma forma diferencial em U e, como $dx_i(a_j) = \delta_{ij}$, concluímos que $\{dx_i\}$ é o correferencial associado ao referencial $\{a_i\}$. O referencial dado se exprime em termos dos a_i por

$$e_i = \sum_j \beta_{ij} \ a_j, \tag{4}$$

onde os β_{ij} são funções diferenciáveis em U e, para cada $q \in U$, a matriz $(\beta_{ij}(q))$ é uma matriz ortogonal. Como $\omega_i(e_j) = \delta_{ij}$, temos

$$\omega_i = \sum_j \beta_{ij} \ dx_j. \tag{5}$$

Diferenciando (4), obtemos

$$de_i = \sum_k d\beta_{ik} \ a_k = \sum_k d\beta_{ij} \sum_j \beta_{jk} \ e_j.$$

Como $de_i = \sum_j \omega_{ij} \ e_j$, concluímos que

$$\omega_{ij} = \sum_{k} d\beta_{ik} \,\beta_{jk},\tag{6}$$

ou seja,

$$\sum_{j} \omega_{ij} \beta_{js} = \sum_{jk} d\beta_{ik} \beta_{jk} \beta_{js} = d\beta_{is}, \quad s = 1, \dots, n.$$
 (7)

Por fim, diferenciando exteriormente (5) e usando (7), obtemos

$$d\omega_i = \sum_j d\beta_{ij} \wedge dx_j = \sum_{j,k} \omega_{ik} \, \beta_{kj} \wedge dx_j = \sum_k \omega_k \wedge \omega_{ki},$$

que é a primeira equação de estrutura (2).

Diferenciando (6) e usando (7), obtemos

$$d\omega_{ij} = -\sum_{k} d\beta_{ik} \wedge d\beta_{jk}$$

$$= -\sum_{k} \left\{ \left(\sum_{l=1}^{n} \omega_{il} \beta_{lk} \right) \wedge \left(\sum_{s} \omega_{js} \beta_{sk} \right) \right\}$$

$$= -\sum_{s} \omega_{is} \wedge \omega_{js}$$

$$= \sum_{k} \omega_{ik} \wedge \omega_{kj},$$
(8)

que é a segunda equação de estrutura (3).

De modo inteiramente análogo ao que foi feito em \mathbb{R}^n , podemos definir, mais geralmente, um referencial ortonormal móvel em um aberto U de uma variedade Riemanniana M^n qualquer. Para finalizarmos esta seção, apresentaremos o importante lema de Cartan e demonstraremos a existência e unicidade das formas de conexão.

Lema 4 (Cartan) Sejam V um espaço vetorial de dimensão n e $\omega_1, \ldots, \omega_r : V \to \mathbb{R}$, $r \le n$, formas lineares de V linearmente independentes. Suponhamos que existam formas lineares $\theta_1, \ldots, \theta_r : V \to \mathbb{R}$ satisfazendo a seguinte condição,

$$\sum_{i=1}^{r} \omega_i \wedge \theta_i = 0.$$

Então,

$$\theta_i = \sum_j a_{ij} \,\omega_j, \quad i, j = 1, \dots, r, \quad a_{ij} = a_{ji}.$$

Demonstração: Completemos as formas $\omega_1, \ldots, \omega_r$ em uma base $\omega_1, \ldots, \omega_r, \omega_{r+1}, \ldots, \omega_n$ de V^* (espaço dual de V) e escrevamos

$$\theta_i = \sum_{j=1}^r a_{ij} \ \omega_j + \sum_{l=r+1}^n b_{il} \ \omega_l.$$

Basta agora observarmos que a condição $\sum_i \omega_i \wedge \theta_i = 0$ implica em

$$0 = \sum_{i=1}^{r} \omega_{i} \wedge \theta_{i}$$

$$= \sum_{i=1}^{r} \omega_{i} \wedge \sum_{j=1}^{r} a_{ij} \omega_{j} + \sum_{i=1}^{r} \omega_{i} \wedge \sum_{l=r+1}^{n} b_{il} \omega_{l}$$

$$= \sum_{i < j} (a_{ij} - a_{ji}) \omega_{i} \wedge \omega_{j} + \sum_{i < l} b_{il} \omega_{i} \wedge \omega_{l}. \tag{9}$$

Como os $\omega_k \wedge \omega_s$, k < s, k, s = 1, ..., n, são linearmente independentes, concluímos que $a_{ij} = a_{ji}$ e $b_{il} = 0$.

Lema 5 Sejam M^n uma variedade Riemanniana, $q \in M^n$ e $U \subset M^n$ uma vizinhança de q. Sejam (e_1, \ldots, e_n) um referencial móvel em U e $\omega_1, \ldots, \omega_n$ o correferencial associado a $\{e_i\}$. Suponha que exista em U um conjunto de 1-formas diferenciais ω_{ij} satisfazendo as condições

$$\omega_{ij} = -\omega_{ji} \ e \ d\omega_j = \sum_k \omega_k \wedge \omega_{kj}.$$

Então um tal conjunto é único.

Demonstração: Suponhamos que exista outro conjunto de formas $\bar{\omega}_{ij}$ com

$$\bar{\omega}_{ij} = -\bar{\omega}_{ji}, \quad d\omega_j = \sum_k \omega_k \wedge \bar{\omega}_{kj}.$$

Então, $\sum_k \omega_k \wedge (\bar{\omega}_{kj} - \omega_{kj}) = 0$ e, pelo lema de Cartan,

$$\bar{\omega}_{kj} - \omega_{kj} = \sum_{i} B_{ki}^{j} \omega_{i}, \quad B_{ki}^{j} = B_{ik}^{j}.$$

Observemos que,

$$\bar{\omega}_{kj} - \omega_{kj} = \sum_{i} B_{ki}^{j} \omega_{i} = -(\bar{\omega}_{jk} - \omega_{jk}) = -\sum_{i} B_{ji}^{k} \omega_{i}$$

e, como os ω_i são linearmente independentes, então $B_{ki}^j = -B_{ji}^k$. Usando as simetrias obtidas, concluímos que

$$B_{ii}^k = -B_{ki}^j = -B_{ik}^j = B_{ik}^i = B_{ki}^i = -B_{ij}^k = -B_{ii}^k = 0,$$

ou seja, $\bar{\omega}_{kj} = \omega_{kj}$.

Lema 6 Escolhido um referencial $\{e_i\}$ em um aberto $U \subset M^n$ de uma variedade Riemanniana M^n , existe em U um conjunto de formas diferenciais ω_{ij} que satisfazem

$$\omega_{ij} = -\omega_{ji} \ e \ d\omega_j = \sum_k \omega_k \wedge \omega_{kj}. \tag{10}$$

Demonstração: Dado um ponto $q \in M^n$, o conjunto $\{\omega_i \wedge \omega_j; i < j, i, j = 1, \dots, n\}$ forma uma base para o espaço $\Lambda^2(T_qM^n)^*$ das formas bilineares alternadas de $T_qM^n \times T_qM^n$, onde T_qM^n denota o espaço tangente a M^n em q. Assim, podemos escrever

$$d\omega_j = \sum_{k < i} A^j_{ki} \omega_k \wedge \omega_i; \quad \text{com} \quad A^j_{ki} = -A^j_{ik}. \tag{11}$$

Queremos determinar funções $C^i_{kj}=-C^i_{jk}$ tais que as formas diferenciais

$$\omega_{kj} = \sum_{i} C_{kj}^{i} \omega_{i} \tag{12}$$

satisfaçam (10). Se tais formas existirem, então de (10) e (11) teremos

$$d\omega_j = \sum_{k < i} A^j_{ki} \omega_k \wedge \omega_i = \sum_k \omega_k \wedge \left(\sum_i C^i_{kj} \omega_i\right)$$
$$= \sum_{k < i} (C^i_{kj} - C^k_{ij}) \omega_k \wedge \omega_i.$$

Igualando os coeficientes de termos correspondentes nas equações acima, obtemos

$$A_{ki}^{j} = C_{kj}^{i} - C_{ij}^{k}$$

$$A_{ij}^{k} = C_{ik}^{j} - C_{jk}^{i}$$

$$A_{kj}^{i} = C_{ki}^{j} - C_{ji}^{k}$$

Adicionando membro a membro as igualdades acima, encontraremos a seguinte condição necessária para a existência dos C_{ki}^i ,

$$C_{kj}^{i} = \frac{1}{2} (A_{ki}^{j} + A_{ij}^{k} + A_{kj}^{i}).$$
(13)

Então, basta definirmos C_{kj}^i como em (13) e as formas ω_{ij} por (12).

3 Subvariedades em um espaço Euclidiano

Seja $f: M^n \to E^{n+p}$ uma imersão de uma variedade suave compacta sem bordo n-dimensional M^n em um espaço Euclidiano E^{n+p} de dimensão n+p.

Ao longo desta seção, identificaremos M^n com sua imagem imersa e convencionaremos os seguintes domínios de índices: $1 \le i, j, k \le n$; $1 \le \alpha, \beta, \gamma \le p$; $n+1 \le r, s, t \le n+p$; $1 \le A, B, C \le n+p$. Além disso, denotaremos por $N_q M^n$ o espaço normal a M^n em q.

Consideremos no fibrado tangente $T(E^{n+p})$ um referencial ortonormal local (e_1, \ldots, e_{n+p}) com a propriedade que, quando restritos a um aberto U de M^n , os vetores (e_1, \ldots, e_n) sejam tangentes a U e os vetores $(e_{n+1}, \ldots, e_{n+p})$ sejam normais a U. Denotemos por $(\omega_1, \ldots, \omega_{n+p})$ seu respectivo correferencial. Como vimos na Seção 1, existe uma única 1-forma de conexão, (ω_{AB}) , tal que

$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \quad \omega_{AB} + \omega_{BA} = 0, \quad d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB}.$$

Restringindo estas formas a M^n , temos $\omega_r = 0$, para todo r. Assim,

$$0 = d\omega_r = \sum_i \omega_{ri} \wedge \omega_i, \ \forall \ r.$$

Pelo lema de Cartan, temos

$$\omega_{ri} = \sum_{j} h_{ij}^{r} \omega_{j}, \quad h_{ij}^{r} = h_{ji}^{r}, \ \forall \ i, j, r.$$

A primeira e a segunda forma fundamental são, respectivamente, dadas por

$$I = \sum_{i} (\omega_i)^2$$
 e $II = \sum_{i,j,r} h_{ij}^r \omega_i \omega_j e_r$.

O operador de forma A_e de M^n com relação ao vetor normal $e \in N_q M^n$ é o operador autoadjunto em $T_q M^n$ correspondente à forma quadrática $II_e = \langle II, e \rangle$. A matriz de A_{e_r} com relação à base adaptada $\{e_1, ..., e_{n+p}\}$ é $L_r = (h_{ij}^r)_{n \times n}$.

Além disso, podemos representar o campo vetor curvatura média ξ , a curvatura média H e o comprimento ao quadrado da segunda forma fundamental S da seguinte maneira

$$\xi = \sum_{r} H_r e_r, \ H = |\xi|, \ S = \sum_{i,j,r} (h_{ij}^r)^2,$$

onde $H_r = \frac{1}{n} \sum_i h_{ii}^r$ para todo r.

Denotemos por B_{ν} o fibrado normal unitário de $f(M^n)$ em E^{n+p} , isto é,

$$B_{\nu} = \{(x, \nu(x)) \mid x \in M^n \text{ e } \nu(x) \in N_{f(x)}M^n, \text{ com } \langle \nu(x), \nu(x) \rangle = 1\}.$$

Notemos que B_{ν} é localmente um fibrado de esferas (p-1)-dimensionais sobre $f(M^n)$ e é localmente uma variedade diferenciável de dimensão n+p-1.

Existe uma forma diferenciável $d\sigma_{p-1}$ de grau p-1 em B_{ν} tal que, quando restrita a uma fibra, é o elemento de volume da esfera de vetores normais e unitários em um ponto $x \in M^n$, denotada por S_x^{p-1} .

Com efeito, podemos pensar em $f = e_{n+p}$ como vetor posição da esfera S_x^{p-1} . Assim, das equações (1) e (2) obtemos

$$df = \sum_{\alpha=1}^{p-1} \omega_{n+\alpha} e_{n+\alpha} \quad e \quad de_{n+p} = \sum_{\alpha=1}^{p-1} \omega_{n+p,n+\alpha} e_{n+\alpha},$$

donde segue que,

$$\omega_{n+p,n+\alpha} = \omega_{n+\alpha}.$$

Desse modo, o elemento de volume de S^{p-1}_{x} no referencial acima é dado pela (p-1)-forma

$$d\sigma_{p-1} = \omega_{n+1} \wedge \cdots \wedge \omega_{n+p-1} = \omega_{n+p,n+1} \wedge \cdots \wedge \omega_{n+p,n+p-1}.$$

Por outro lado, o elemento de volume de M^n pode ser representado pela n-forma $dV = \omega_1 \wedge \cdots \wedge \omega_n$. Como B_{ν} é uma variedade diferenciável (n+p-1)-dimensional, então a (n+p-1)-forma dada por

$$dV \wedge d\sigma_{p-1} = \omega_1 \wedge \cdots \wedge \omega_n \wedge \omega_{n+1} \wedge \cdots \wedge \omega_{n+p-1}$$

pode ser considerada como o elemento de volume de B_{ν} .

Em um ponto arbitrário $(x, e) \in B_{\nu}$, denotemos $A_e = (A_{ij})$. Definimos a k-ésima curvatura média $K_k(x, e)$ em (x, e) por

$$det(\delta_{ij} + tA_{ij}) = 1 + \sum_{k} \binom{n}{k} K_k(x, e) t^k,$$

onde δ_{ij} é o delta de Kronecker, t é um parâmetro e

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Quando k=n, a k-ésima curvatura média coincide com a curvatura de Lipschitz-Killing em (x,e). Chamamos a integral

$$K_k^*(x) := \int_{S_x^{p-1}} |K_k(x, e)|^{n/k} d\sigma_{p-1}(e),$$

a k-ésima curvatura absoluta total de M^n em x. A k-ésima curvatura absoluta total com relação a f é definida por

$$TA_k(f) := \frac{1}{c_{n+p-1}} \int_{M^n} K_k^* dV,$$

onde c_{n+p-1} denota o volume da esfera unitária (n+p-1)-dimensional.

O lema, a seguir, estabelece um limite inferior para $TA_n(f)$ em termos dos *i*-ésimos números de Betti $\beta_i(M^n)$ de M^n (confira a Seção 4 para a definição de $\beta_i(M^n)$).

Lema 7 Seja $f: M^n \to E^{n+p}$ uma imersão de uma variedade fechada em E^{n+p} . Então,

$$TA_n(f) \ge \sum_{i=0}^n \beta_i(M^n),$$

onde $\beta_i(M^n)$ é o i-ésimo número de Betti.

Demonstração: Vide (CHERN; LASHOF, 1958, p. 5).

4 Complexos simpliciais

Dizemos que a_0, a_1, \ldots, a_r em \mathbb{R}^n são pontos independentes quando os vetores

$$a_1 - a_0, a_2 - a_0, \dots, a_r - a_0$$

são linearmente independentes. Esta definição não depende da ordem em que os pontos foram listados inicialmente, como se vê sem dificuldade.

Exemplo 8 Dois pontos distintos são independentes. Três pontos são independentes quando são não-colineares e quatro pontos independentes são pontos não-coplanares. Se $\{e_1, \ldots, e_n\}$ é a base canônica do \mathbb{R}^n , então os pontos $0, e_1, \ldots, e_n$ são independentes. O número máximo de pontos independentes em \mathbb{R}^n é n+1.

Uma combinação afim de pontos a_0, a_1, \ldots, a_r em \mathbb{R}^n é uma expressão do tipo

$$p = \alpha_0 \cdot a_0 + \alpha_1 \cdot a_1 + \dots + \alpha_r \cdot a_r,$$

com $\alpha_0 + \alpha_1 + \cdots + \alpha_r = 1$. Se, além disto, tivermos $\alpha_0 \ge 0, \alpha_1 \ge 0, \ldots, \alpha_r \ge 0$, diremos que p é uma combinação convexa dos pontos a_0, a_1, \ldots, a_r .

Um conjunto $X \subset \mathbb{R}^n$ é convexo se, e somente se, toda combinação convexa de elementos de X ainda pertence a X.

O conjunto de todas as combinações convexas de um conjunto arbitrário $X \subset \mathbb{R}^n$ é um conjunto convexo. Ele é chamado a *envoltória convexa* de X e está contido em qualquer conjunto convexo que contenha X. Neste sentido, a envoltória convexa de X é o menor conjunto convexo

contendo X. Podemos descrevê-la como a interseção de todos os conjuntos convexos que contém X.

Sejam a_0, a_1, \ldots, a_k pontos independentes em \mathbb{R}^n . O simplexo k-dimensional (ou k-simplexo) que tem estes pontos como vértices é o conjunto $\sigma = \langle a_0, a_1, \ldots, a_k \rangle$ de todas as combinações convexas $p = \sum_{i=0}^k \alpha_i a_i$, ou seja, é a envoltória convexa do conjunto $\{a_0, a_1, \ldots, a_k\}$. O número k é chamado a dimensão do simplexo.

Fixado um subconjunto $\{i_0,i_1,\ldots,i_j\}\subset\{0,1,\ldots,k\}$, o simplexo $\langle a_{i_0},a_{i_1},\ldots,a_{i_j}\rangle$ é chamado uma face de σ . Em particular, cada vértice de σ é uma face de dimensão zero. Para cada $i=0,\ldots,k$, a face $\sigma_{(i)}=\langle a_0,a_1,\ldots,\widehat{a}_i,\ldots,a_k\rangle$ chama-se a face oposta ao vértice a_i . Se τ é uma face de σ , escreveremos $\tau \prec \sigma$.

Um poliedro é um subconjunto $K \subset \mathbb{R}^n$, no qual foi especificada uma coleção finita de simplexos de \mathbb{R}^n , chamados os simplexos de K, de modo que as condições abaixo são satisfeitas:

- 1. Todo ponto de K pertence a algum simplexo de K (ou seja, K é a reunião dos seus simplexos);
- 2. Toda face de um simplexo de K é ainda um simplexo de K;
- 3. Se σ e ρ são simplexos de K, então $\sigma \cap \rho$ é vazio ou é uma face comum a σ e ρ (e portanto é um simplexo de K).

Exemplo 9 O poliedro mais simples é um simplexo, juntamente com suas faces. Em dimensões zero, um, dois e três são, respectivamente, um ponto, um segmento de reta, um triângulo e um tetraedro.

Consideremos um k-simplexo σ , o qual é a envoltória de um conjunto A de k+1 pontos independentes a_0, \ldots, a_k $(d \ge k)$ em algum espaço Euclidiano \mathbb{R}^d . Neste caso, dizemos que A gera o simplexo σ .

Uma *orientação* de σ é induzida por uma ordenação de seus vértices, denotada por $\langle a_0 \cdots a_k \rangle$, como segue: Para qualquer permutação π de $0, \dots, k$, temos

$$\langle a_{\pi(0)} \cdots a_{\pi(k)} \rangle = (-1)^{\operatorname{sign}(\pi)} \langle a_0, \cdots, a_k \rangle,$$

onde o $sign(\pi)$ é o número de transposições de π (logo, cada simplexo tem duas orientações distintas). Um simplexo junto com uma escolha específica de orientação é chamado simplexo orientado.

Um complexo simplicial K é um conjunto finito de simplexos em algum espaço Euclidiano \mathbb{R}^n , tal que (i) se σ é um simplexo de K e τ é uma face de σ , então τ é um simplexo de K, e (ii) se σ e τ são simplexos de K, então $\sigma \cap \tau$ é ou vazia ou uma face comum de σ e τ . A dimensão de K é o máximo das dimensões de seus simplexos. Se d é a dimensão de K, diremos que K é um d-complexo simplicial. A união de todos os simplexos de K induzidos com a topologia subespaço de \mathbb{R}^m será denotada por |K|.

O *i-esqueleto* de K, denotado por K^i , é a união de todos os simplexos de K de dimensão no máximo i. Um subcomplexo L de K é um subconjunto de K que é um complexo simplicial. Uma triangulação de um espaço topológico X é um par (K,h), onde K é um complexo simplicial e h é um homeomorfismo de |K| em X.

A característica de Euler de um d-complexo simplicial K, denotada por $\chi(K)$, é o número

$$\sum_{i=0}^{d} (-1)^i \alpha_i,$$

onde α_i é o número de *i*-simplexos de K.

5 Espaços de cadeia e homologia simplicial

Seja K um complexo simplicial. Uma k-cadeia simplicial é uma soma formal do tipo $\sum_j a_j \sigma_j$ sobre os k-simplexos orientados σ_j em K, com coeficientes a_j no corpo $\mathbb Q$ dos números racionais. Além disso, por definição, $-\sigma = (-1)\sigma$ é o simplexo obtido de σ invertendo-se sua orientação.

Com as definições canônicas de adição e multiplicação por escalar, o conjunto de todas as cadeias k-simpliciais forma um espaço vetorial $C_k(K,\mathbb{Q})$, chamado espaço vetorial de k-cadeias simpliciais de K, que é o espaço vetorial livre gerado pelos k-simplexos. A dimensão desse espaço vetorial é igual ao número de k-simplexos de K. Portanto, a característica de Euler de um complexo simplicial d-dimensional K pode ser expressada como uma soma alternada das dimensões dos espaços de k-cadeias,

$$\chi(K) = \sum_{i=0}^{d} (-1)^i \operatorname{dim} C_k(K, \mathbb{Q}). \tag{14}$$

Seja $\langle v_{i_0} \cdots v_{i_h} \cdots v_{i_k} \rangle$ um k-simplexo. Usaremos a notação $\langle v_{i_0} \cdots \hat{v}_{i_h} \cdots v_{i_k} \rangle$ para indicar a omissão do termo v_{i_h} .

O operador de bordo $\partial_k: C_k(K,\mathbb{Q}) \to C_{k-1}(K,\mathbb{Q})$ é definido como segue. Dado um único k-simplexo $\sigma = \langle v_{i_0} \cdots v_{i_k} \rangle, k > 0$, pomos

$$\partial_k \sigma = \sum_{h=0}^k (-1)^h \langle v_{i_0} \cdots \hat{v}_{i_h} \cdots v_{i_k} \rangle,$$

e então estendemos linearmente ∂_k pondo

$$\partial_k \left(\sum_j a_j \sigma_j \right) = \sum_j a_j \partial_k \sigma_j.$$

Por consistência definimos $C_{-1}(K,\mathbb{Q})=0$ e $\partial_0:C_0(K,\mathbb{Q})\to C_{-1}(K,\mathbb{Q})$ como sendo a aplicação nula. O operador de bordo é uma aplicação linear entre espaços vetoriais e satisfaz a relação $\partial_k\partial_{k+1}=0$.

O espaço vetorial $Z_k(K,\mathbb{Q})=\ker\partial_k$ é chamado espaço vetorial de k-ciclos simpliciais. O espaço vetorial $B_k(K,\mathbb{Q})=\operatorname{im}\partial_{k+1}$ é chamado espaço vetorial de k-bordos simpliciais. Como o bordo de um bordo é 0, $B_k(K,\mathbb{Q})$ é um subespaço de $Z_k(K,\mathbb{Q})$.

O espaço vetorial quociente

$$H_k(K,\mathbb{Q}) = Z_k(K,\mathbb{Q})/B_k(K,\mathbb{Q})$$

é o k-ésimo espaço vetorial de homologia de K. Dois k-ciclos α e β são k-homólogos se a diferença entre eles é um k-bordo, isto é, se existe uma (k+1)-cadeia γ tal que $\alpha - \beta = \partial_{k+1}\gamma$. A classe de homologia de $\alpha \in Z_k(K, \mathbb{Q})$ é denotada por $[\alpha]$.

Os coeficientes de cadeias simpliciais que consideramos até agora foram os números racionais. Normalmente, esses coeficientes são tomados em um anel, como o conjunto dos inteiros. Neste caso, obtém-se grupos de homologia, em vez de espaços vetoriais de homologia. Assim, $H_k(K,\mathbb{Z})$ é chamado de k-ésimo grupo de homologia do complexo K.

O k-ésimo número de Betti de um complexo simplicial K, denotado por $\beta_k(K,\mathbb{Q})$, é a dimensão de $H_k(K,\mathbb{Q})$. Em particular,

$$\beta_k(K, \mathbb{Q}) = \dim Z_k(K, \mathbb{Q}) - \dim B_k(K, \mathbb{Q}). \tag{15}$$

6 Demonstração do resultado principal

Demonstração: (Do Teorema 2). O gênero g e a característica de Euler $\chi(M^2)$ de uma 2-superfície estão relacionados pela equação $\chi(M^2)=2-2g$. Como, por hipótese, $g\geq 1$, então $\chi(M^2)\leq 0$. Da fórmula de Gauss-Bonnet, segue que M^2 tem curvatura Gaussiana $K\leq 0$. Levando-se em conta que "a curvatura escalar normalizada de uma 2-superfície coincide com sua curvatura Gaussiana"(HOU, 1998, p. 503) e usando uma desigualdade devida a Chen (1973, p. 641), obtemos

$$\int_{M^2} H^2 dV \ge \frac{\pi^2}{2} \cdot \left(\frac{1}{c_3} \int_{M^2} K_2^* dV\right) + \frac{\pi}{4} \int_{M^2} K dV, \tag{16}$$

onde c_3 denota o volume da esfera unitária 3-dimensional de E^4 .

Da identidade $\chi(M^2) = \beta_0(M^2) - \beta_1(M^2) + \beta_2(M^2)$, do Lema 7 e de (16), temos

$$\int_{M^2} H^2 dV \ge \frac{\pi^2}{2} \cdot [\beta_0(M^2) + \beta_1(M^2) + \beta_2(M^2)] + \frac{\pi^2}{2} \cdot [\beta_0(M^2) - \beta_1(M^2) + \beta_2(M^2)]$$

$$= \pi^2 [\beta_0(M^2) + \beta_2(M^2)]$$

$$= 2\pi^2,$$

onde usamos na última igualdade o fato de que $\beta_0(M^2) = \beta_2(M^2) = 1$ para toda superfície bidimensional compacta, conforme Otsuki (1966).

7 Referências

CHEN, B. Y. On the total curvature of immersed manifolds, III: surfaces in Euclidean 4-space, **Amer. J. Math**, v. 95, n. 3, p. 636-642, 1973.

CHEN, B. Y. On the total curvature of immersed manifolds, IV: spectrum and total mean curvature. **Bull. Inst. Math. Acad. Sinica**, v. 7, n. 3, p. 301-311, 1979.

CHEN, B. Y. On the total curvature of immersed manifolds, V: C-surfaces in Euclidean m-space. **Bull. Inst. Math. Acad. Sinica**, v. 9, n. 4, p. 509-516, 1981.

CHERN, S. S.; LASHOF, R. K. On the total curvature of immersed manifolds. II, Michigan Math. J., v. 5, n. 1, p. 5-12, 1958.

HELFRICH, W. Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch, v. 28, p. 693-703, 1973.

HOU, Z. H. The total mean curvature of submanifolds in a Euclidean space, Michigan Math. J., v. 45, n. 3, p. 497-505, 1998.

OTSUKI, T. On the total curvature of surfaces in Euclidean spaces, Japan. J. Math, v. 35, p. 61-71, 1966.

WILLMORE, T. J. Mean curvature of immersed manifolds, An. Sti. Univ. "Al. I. Cuza" Iasi. **Sect. I. a Mat**, v. 14, p. 99-103, 1968.