Controle da pressão de uma máquina a vapor via estabilidade assintótica^{*}

Rodrigo Mendes Alves[†] Jean Venato Santos[‡]

Resumo

O trabalho proposto trata-se de uma manipulação matemática baseada em conceitos físicos, com o objetivo de descrever o problema de estabilidade de um controlador automático de uma máquina a vapor.

Palavras Chave: Equações diferenciais, Campos de vetores, Retrato de fase e Estabilidade assintótica

Introdução

A máquina a vapor tem o intuito de transformar energia térmica em energia mecânica, sendo largamente utilizada no período da Revolução Industrial, a partir do final do século XVIII. Entre outros mecanismos da mesma destaca-se o "controlador centrífugo de Watt", responsável por manter a estabilidade da máquina controlando a saída de vapor e, por consequência, as forças envolvidas no trabalho da máquina.

Através do estudo da classificação das equações diferenciais lineares no plano, de campos de vetores para a análise dos retratos de fases das equações diferenciais que regem o problema e da estabilidade assintótica em pontos de equilíbrio; pode-se concluir o trabalho matemático sobre a máquina e chegar numa desigualdade que fornece informações suficientes para controlar a estabilidade da máquina a vapor.

A princípio este mecanismo funcionava bem, fazendo com que a máquina mantivesse a velocidade de rotação desejada. O estado ideal da máquina pode ser visto como um ponto de equilíbrio do sistema. Como os controladores faziam o sistema voltar ao estado ideal quando houvesse pequenas perturbações, tal estado podia ser visto como um ponto de equilíbrio estável.

Com o avanço da tecnologia houve uma melhoria nos materiais utilizados nos controladores. Paradoxalmente, esta melhoria acarretou no mau funcionamento dos mesmos. Maxwell em [7] e Vichégnadski em [9], apresentaram explicações e consequentemente soluções para tal perda de estabilidade.

A seguir descrevemos a explicação dada por Vichégnadski em [9], recompilada por Doering e Lopes em [4].

A figura abaixo esquematiza a máquina a vapor utilizada no século XVIII.

^{*}Trabalho de Iniciação científica

[†]Email: rodrigo-mendes-alves@hotmail.com. Curso de Engenharia Mecânica, Universidade Federal de Uberlândia

[‡]Email: jvenatos@famat.ufu.br. Faculdade de Matemática, Universidade Federal de Uberlândia

Figura 1: Máquina a vapor

A produção de energia da máquina a vapor começa com o aquecimento de água, que forma o vapor d'água que exerce pressão sobre um mecanismo de transmissão que, por sua vez, põe um eixo em movimento. A rotação desse eixo servia a vários fins industriais e tinha sua velocidade controlada pela quantidade de vapor que era aplicada ao mecanismo. O eixo é dotado de um disco de inércia J o qual, posto em movimento pela força do vapor realiza um trabalho útil de acordo com a Segunda Lei de Newton para os momentos:

$$P_1 - F = J\omega'.$$

O momento P_1 refere-se ao momento produzido pela força de vapor no disco, e o momento F refere-se ao momento da força de resistência à rotação. O objetivo é fazer o sistema atingir rapidamente uma velocidade estacionária ω_0 , mas ao mesmo tempo conseguir manter essa velocidade, com mais entrada de vapor, sempre que a força de resistência aumentar.

Na seção 2 descrevemos o mecanismo de controle da pressão na máquina, assim como sua modelagem matemática a partir de um sistema de equações não lineares proposto por Vichégnadski em [9]. Na seção 2 apresentamos os principais conceitos e resultados da teoria qualitativa de equações diferenciais que são aplicados no sistema do controlador. Na seção 4 aplicaremos a teoria descrita na seção 3 para estudar a estabilidade do controlador. Por fim, na última seção é apresentada uma discussão dos possíveis motivos causadores da perda de estabilidade do sistema.

1 Modelagem do controlador de Watt

O foco deste trabalho está na modelagem matemática do regulador e na solução do problema de estabilidade do mesmo. Analisando as forças que atuam no regulador, encontra-se o diagrama:

Figura 2: Diagrama de forças do controlador de Watt

Verticalmente, a única variável é o ângulo ϕ entre o eixo vertical e as hastes, conforme Figura 2. Supondo unitário, para simplificar, o comprimento das hastes, vemos que, como no caso de um pêndulo, a força mg da gravidade impõe uma componente tangencial $-mg \operatorname{sen} \phi$. Também temos uma força de atrito no sistema, principalmente nas hastes; supondo pequenas variações, podemos considerar o atrito proporcional à velocidade vertical das esferas, ou seja, dado por $-b\phi'$. Finalmente, temos o movimento horizontal circular das esferas do regulador, de velocidade angular θ , imposto pela rotação do eixo vertical. A força centrífuga da rotação horizontal é dada por $F_{cent} = m\omega^2 r$, sendo r a distância da bola até a haste, considerando que r é a projeção $l \operatorname{sen} \phi$, onde l é unitário, temos que $F_{cent} = m\theta^2 \operatorname{sen} \phi$, com componente tangencial $m\theta^2 \operatorname{sen} \phi \cos \phi$. Sabe-se que a força tangencial muda o módulo da velocidade do corpo, portanto é necessário a análise das forças nesta direção dada pela segunda Lei de Newton:

$$m\phi'' = m\theta^2 \sin\phi\cos\phi - mg\sin\phi - b\phi'.$$

Vejamos a equação diferencial do disco de inércia J. Para cada ângulo ϕ de abertura das hastes do regulador temos uma posição do mancal, que varia com $\cos \phi$, produzindo um momento de força de ação do vapor proporcional, dado por $P_1 = k \cos \phi$. Assim, a equação diferencial do eixo de inércia é

$$J\omega' = k\cos\phi - F,$$

onde F é a força de resistência à rotação.

Introduzindo a variável $\psi = \phi'$ e usando a relação $\theta = n\omega$ entre o regulador e a máquina a vapor, onde n é o coeficiente de transmissão da engrenagem, resulta o sistema

$$\begin{cases} \phi' = \psi \\ \psi' = n^2 \omega^2 \operatorname{sen} \phi \cos \phi - g \operatorname{sen} \phi - \frac{b}{m} \psi, \\ \omega' = \frac{k}{J} \cos \phi - \frac{F}{J} \end{cases}$$
(1.0.1)

associado ao campo vetorial

$$X(\phi, \psi, \omega) = (\psi, n^2 \omega^2 \operatorname{sen} \phi \cos \phi - g \operatorname{sen} \phi - \frac{b}{m} \psi, \frac{k}{J} \cos \phi - \frac{F}{J})$$

definido em \mathbb{R}^3 .

Pelas características do sistema, basta considerar X definido no aberto $\Omega = (0, \pi/2) \times \mathbb{R} \times (0, \infty)$, onde $\cos \phi > 0$, $\sin \phi > 0$ e $\omega > 0$, de modo que (ϕ, ψ, ω) é um ponto de equilíbrio do campo vetorial X, isto é, $X(\phi, \psi, \omega) = (0, 0, 0)$ se, e somente se,

$$\begin{cases} k\cos\phi = F\\ \psi = 0,\\ n^2\omega^2\cos\phi = g \end{cases}$$
(1.0.2)

Denotando por $(\phi_0, 0, \omega_0)$ a única solução deste sistema, temos que tal solução é o único ponto de equilíbrio do campo X no aberto Ω , ou seja, o estado ideal do sistema. A partir das equações (1.0.2) temos que $Fn^2\omega_0^2 = kg = \text{constante.}$ Assim, para cada força de resistência F dada, existe uma solução estacionária do sistema (1.0.1), com ângulo ϕ_0 estacionário ($\phi' = \psi = 0$) e velocidade angular $\omega_0 > 0$.

Na próxima seção é apresentada a teoria necessária para o estudo da estabilidade do estado ideal.

2 Base teórica

Um campo vetorial X de classe C^1 num subconjunto Ω aberto do \mathbb{R}^n , é uma aplicação de classe C^1 que a cada ponto p de Ω associa um vetor X(p) em \mathbb{R}^n . Ao campo vetorial X está associada a equação diferencial

$$x' = X(x), \tag{2.0.3}$$

e vice-versa.

Seja I um intervalo aberto da reta \mathbb{R} contendo o zero. Dizemos que uma função $\gamma : I \to \Omega$, de classe C^1 , é uma solução ou trajetória do campo vetorial X se $\gamma'(t) = X(\gamma(t))$, para todo $t \in I$. Para simplificar a notação, identificamos a solução γ com sua imagem orientada, a qual denominamos órbita de X, definida em $I(\gamma)$. Uma função $\gamma : I \to U$ chama-se solução máxima se para toda trajetória $\eta : J \to U$ tal que $I \subseteq J$ e $\gamma = \eta|_I$ então J = I e consequentemente $\gamma = \eta$. Neste caso I chama-se intervalo maximal. O conjunto aberto Ω , munido da decomposição em órbitas (imagens orientadas das soluções maximais) de X é chamado retrato de fase de X.

O seguinte teorema da teoria clássica de equações diferencias estabelece, além da existência e unicidade de soluções da equação (2.0.3), a existência de um fluxo de classe C^1 associado ao campo $X : \Omega \to \mathbb{R}^n$:

Teorema 1 Seja $X : \Omega \to \mathbb{R}^n$.

- 1. Para cada $p \in \Omega$ existe um intervalo maximal $I(\gamma_p)$ onde está definida a única solução γ_p da equação (2.0.3) tal que $\gamma_p(0) = p$.
- 2. Se $q = \gamma_p(t)$ para algum $t \in I(\gamma_p)$, então $I(\gamma_q) = I(\gamma_p) t = \{r t; r \in I(\gamma_p)\}$ e $\gamma_q(s) = \gamma_p(t + s)$ para todo $s \in I(\gamma_q)$.
- 3. O conjunto $\Delta = \{(t,p); p \in \Omega, t \in I(\gamma_p)\}$ é aberto em \mathbb{R}^{n+1} e a aplicação $\varphi : \Delta \to U$ dada por $\varphi(t,p) = \gamma_p(t)$ é de classe C^1 .

Dem.: Veja [4, 6, 10].

A aplicação $\varphi : \Delta \to \Omega$ é chamada *fluxo gerado por X*.

Dizemos que $p \in \Omega$ é um ponto singular ou ponto de equilíbrio de X se X(p) = O, caso contrário dizemos que p é um ponto regular de X. Uma trajetória γ é dita periódica se está definida em \mathbb{R} e existe um real $\tau > 0$ tal que $\gamma(t + \tau) = \gamma(t)$ para todo $t \in \mathbb{R}$.

Um ponto singular p de um campo vetorial $X : \Omega \to \mathbb{R}^n$ é hiperbólico se os autovalores (complexos) da derivada DX_p têm parte real não nula. Neste caso, o número de autovalores de DX_p que têm parte real negativa será chamado de *índice* de estabilidade de X em p. Um ponto singular p é do tipo sela hiperbólica se seu índice de estabilidade é maior do que zero e menor que n. Denotando por φ_t o fluxo associado ao campo vetorial X, dizemos que um ponto de equilíbrio p de X é estável se, para qualquer vizinhança $U \subset \mathbb{R}^n$ de p, existe uma vizinhança $W \subset \mathbb{R}^n$ de p tal que $W \subset \Omega \cap U$ e $\varphi_t(q) \in U$, para todo $q \in W$ e t > 0. Um ponto de equilíbrio p é dito assintoticamente estável se ele for estável e $\lim_{t\to\infty} \varphi_t(q) = p$, para qualquer $q \in W$.

Dados dois campos vetoriais $X_1 \in X_2$ definidos nos abertos $\Omega_1 \in \Omega_2$. Dizemos que X_1 é topologicamente equivalente a X_2 se existir um homeomorfismo $h : \Omega_1 \to \Omega_2$ que leva órbita de X_1 em órbita de X_2 preservando orientação. Mais precisamente, sejam $p \in \Omega_1 \in \gamma_1(p)$ a órbita orientada de X_1 passando por p, então $h(\gamma_1(p))$ é a órbita orientada $\gamma_2(h(p))$ de X_2 passando por h(p). Tal noção estabelece uma relação de equivalência entre campos vetoriais definidos em abertos de \mathbb{R}^n .

O próximo resultado estabelece a equivalência topológica local entre dois campos em vizinhanças de pontos singulares hiperbólicos com o mesmo índice de estabilidade:

Teorema 2 (Hartman-Grobman) Seja Ω um aberto de \mathbb{R}^n , dado um campo vetorial $X : \Omega \to \mathbb{R}^n$ com um ponto singular hiperbólico p. Existem vizinhanças V de p e W de O em \mathbb{R}^n tais que $X|_V$ é topologicamente equivalente a $DX_p|_W$.

Dem.: Veja [10, 6].

Este resultado aliado à classificação dos sistemas de equações ordinárias lineares fornece um entendimento local em torno de pontos de equilíbrio hiperbólicos, em particular permite estudar a estabilidade e estabilidade assintótica de tais pontos. Com efeito, dado um ponto de equilíbrio p do campo vetorial $X : \Omega \to \mathbb{R}^n$, a fim de que ele seja assíntoticamente estável basta garantir que a aplicação linear DX_p tenha todos autovalores com parte real negativa.

Uma ferramenta prática e eficaz no estudo do sinal da parte real das raízes de um polinômio é dada pelo critério de Hurwitz ([5]), o qual passamos a descrever sucintamente. Uma apresentação mais completa deste critério inclusive sua demonstração e algumas aplicações em estabilidade de sistemas dinâmicos podem ser encontradas em [7] e [11].

Seja $p(\lambda) = a_n \lambda^n + \ldots + a_1 \lambda + a_0$ um polinômio com coeficientes reais positivos. Para $k = 1, \ldots, n$, considere os seguintes determinantes cujas matrizes associadas são conhecidas como matrizes de Hurwitz:

$$\Delta_1 = |a_{n-1}|, \quad \Delta_2 = \begin{vmatrix} a_{n-1} & a_n \\ a_{n-3} & a_{n-2} \end{vmatrix}, \dots, \quad \Delta_k = \begin{vmatrix} a_{n-1} & a_n & 0 & \dots & 0 \\ a_{n-3} & a_{n-2} & a_{n-1} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ a_{1-n} & a_{2-n} & a_{3-n} & \dots & a_{n-k} \end{vmatrix},$$

27

onde estamos supondo que $a_j = 0$ para j < 0.

Teorema 3 (Critério de Hurwitz [5]) Sejam $a_i \in \mathbb{R}$, $a_i > 0$ para i = 0, 1, 2, ..., n, e o polinômio

$$p(\lambda) = a_n \lambda^n + \ldots + a_1 \lambda + a_0.$$

Então, todas as raízes de $p(\lambda)$ têm parte real negativa se, e somente se, $\Delta_k > 0$ para k = 1, 2, ..., n.

Dem.: Veja [5, 7, 11].

Exemplo 4 Considere o polinômio

$$x^4 + 5x^3 + 8x^2 + 7x + 3.$$

Note que todos os coeficientes são positivos. Verifiquemos se $\Delta_k>0$ para k=1,2,3,4:

$$\Delta_{1} = |5| = 5, \ \Delta_{2} = \begin{vmatrix} 5 & 1 \\ 7 & 8 \end{vmatrix} = 33, \ \Delta_{3} = \begin{vmatrix} 5 & 1 & 0 \\ 7 & 8 & 5 \\ 0 & 3 & 7 \end{vmatrix} = 156 e$$
$$\Delta_{4} = \begin{vmatrix} 5 & 1 & 0 & 0 \\ 7 & 8 & 5 & 1 \\ 0 & 3 & 7 & 8 \\ 0 & 0 & 0 & 3 \end{vmatrix} = 468.$$

Logo, pelo Critério de Hurwitz, todas as raízes do polinômio acima têm parte real negativa. O que está de acordo com o esperado, uma vez que o polinômio em questão foi obtido a partir da fatoração $(x+1)(x+3)(x+\frac{1}{2}+\frac{\sqrt{3}}{2}i)(x+\frac{1}{2}-\frac{\sqrt{3}}{2}i)$ e portanto suas raízes $-1, -3, -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ têm todas parte real negativa.

3 Aplicação

Voltamos agora ao estudo do sistema (1.0.1), mais especificamente do seu ponto de equilíbrio ($\phi_0, 0, \omega_0$) calculado em (3.0.4).

Por um lado, o Teorema de Hartman-Grobman, identifica o comportamento do campo não linear X, numa vizinhança do ponto de equilíbrio $(\phi_0, 0, \omega_0)$, com o comportamento do campo linear definido pela aplicação derivada:

$$DX(\phi_0, 0, \omega_0) = \begin{pmatrix} 0 & 1 & 0 \\ n^2 \omega_0^2 \cos 2\phi_0 - g \cos \phi_0 & -b/m & 2n^2 \omega_0 \sin \phi_0 \cos \phi_0 \\ \frac{k}{J} \sin \phi_0 & 0 & 0 \end{pmatrix}.$$
(3.0.4)

Observação 5 Para garantir a estabilidade assintótica de $(\phi_0, 0, \omega_0)$, e portanto a estabilidade do sistema máquina-regulador, basta analisar os parâmetros ajustáveis da maquina e do regulador para que induzam autovalores de $DX(\phi_0, 0, \omega_0)$ com parte real negativa.

Para isto, considere o polinômio característico de (3.0.4):

$$p(\lambda) = \det(\lambda I - DX) = \begin{vmatrix} \lambda & -1 & 0\\ -n^2 \omega_0^2 \cos 2\phi_0 + g \cos \phi_0 & \lambda + b/m & -2n^2 \omega_0 \sin \phi_0 \cos \phi_0 \\ \frac{k}{J} \sin \phi_0 & 0 & \lambda \end{vmatrix},$$

00

ou seja,

$$p(\lambda) = \lambda^3 + (b/m)\lambda^2 + (-n^2\omega_0^2\cos 2\phi_0 + g\cos\phi_0)\lambda + 2\frac{k}{J}n^2\omega_0\sin^2\phi_0\cos\phi_0.$$
(3.0.5)

Para estudar o sinal da parte real das raízes deste polinômio vamos aplicar a seguinte proposição que é uma consequência do Critério de Hurwitz enunciado no Teorema 3:

Proposição 6 Se $a_2 > 0$, $a_1 > 0$, $a_0 > 0$, então as raízes de $p(\lambda) = \lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$ têm todas parte real negativa se, e somente se, $a_2a_1 > a_0$.

Dem.: Sendo $a_2 > 0$, $a_1 > 0$ e $a_0 > 0$. Calculando os determinantes Δ_k para k = 1, 2, 3, associados a polinômio $p(\lambda)$ obtemos:

$$\Delta_1 = |a_2| = a_2, \quad \Delta_2 = \begin{vmatrix} a_2 & 1 \\ a_0 & a_1 \end{vmatrix} = a_2 a_1 - a_0$$
$$\Delta_3 = \begin{vmatrix} a_2 & 1 & 0 \\ a_0 & a_1 & a_2 \\ 0 & 0 & a_0 \end{vmatrix} = a_0 (a_2 a_1 - a_0).$$

Assim, fica claro que $\Delta_k > 0$ para k = 1, 2, 3 se, e somente se, $a_2a_1 > a_0$. Portanto, pelo Teorema 3 [Critério de Hurwitz], todas as raízes de $p(\lambda)$ têm parte real negativa se, e somente se, $a_2a_1 > a_0$. \Box

No intuito de aplicar a Proposição 6 no polinômio característico (3.0.5) será verificado, inicialmente, se seus coeficientes

$$a_2 = b/m$$
, $a_1 = (-n^2 \omega_0^2 \cos 2\phi_0 + g \cos \phi_0)$ e $a_0 = 2\frac{k}{J}n^2 \omega_0 \sin^2 \phi_0 \cos \phi_0$,

são positivos:

$$b > 0, m > 0 \Rightarrow a_2 > 0$$
 e

$$a_1 = (-n^2\omega_0^2\cos 2\phi_0 + g\cos\phi_0) > 0 \Leftrightarrow g\cos\phi_0 > n^2\omega_0^2\cos 2\phi_0$$

Sabendo que

$$n^2 \omega_0^2 = g/\cos\phi_0 \tag{3.0.6}$$

temos,

$$a_1 > 0 \Leftrightarrow \cos^2 \phi_0 > \cos^2 \phi_0 \Rightarrow \cos^2 \phi_0 > \cos^2 \phi_0 - \sin^2 \phi_0 \Leftrightarrow \sin^2 \phi_0 > 0,$$

o que é satisfeito, pois $0 < \phi_0 < \pi/2$. Tal restrição no argumento ϕ_0 e o fato das constantes ω_0 , k, J e n serem positivos fornecem também:

$$a_0 = 2\frac{k}{J}n^2\omega_0 \sin^2\phi_0 \cos\phi_0 > 0.$$

Finalmente, aplicando a condição $a_2a_1 > a_0$, da Proposição 6, nos coeficientes do polinômio característico (3.0.5) será obtida uma condição equivalente relacionada aos parâmetros do sistema (1.0.1):

$$(b/m)(-n^{2}\omega_{0}^{2}\cos 2\phi_{0} + g\cos \phi_{0}) > 2\frac{k}{J}n^{2}\omega_{0}\sin^{2}\phi_{0}\cos\phi_{0}$$
$$-n^{2}\omega_{0}^{2}\cos 2\phi_{0} + g\cos\phi_{0} > 2\frac{km}{bJ}n^{2}\omega_{0}\sin^{2}\phi_{0}\cos\phi_{0}$$

DOI: 10.21167/cqdvol21201323169664rmajvs2331 - Disponível em: http://www2.fc.unesp.br/revistacqd/index.jsp

ALVES, R. M.; SANTOS, J. V. Controle da pressão de uma máquina a vapor via estabilidade assintótica. C.Q.D. - Revista Eletrônica Paulista de Matemática, Bauru, v. 2, n. 1, p. 23-31, jul. 2013.

Aplicando novamente a igualdade (3.0.6) segue que:

$$-n^{2}\omega_{0}^{2}\cos 2\phi_{0} + g\cos\phi_{0} > 2\frac{kmg}{Jb\omega_{0}}\sin^{2}\phi_{0}$$

$$-n^{2}\omega_{0}^{2}\cos 2\phi_{0} + g\cos\phi_{0} > 2\frac{kmg}{Jb\omega_{0}}\left(-\cos 2\phi_{0} + \cos^{2}\phi_{0}\right)$$

$$-n^{2}\omega_{0}^{2}\cos 2\phi_{0} + \frac{g^{2}}{n^{2}\omega_{0}^{2}} > 2\frac{kmg}{Jb\omega_{0}}\left(-\cos 2\phi_{0} + \frac{g^{2}}{n^{4}\omega_{0}^{4}}\right)$$

$$\frac{1}{n^{2}\omega_{0}^{2}}\left(-n^{4}\omega_{0}^{4}\cos 2\phi_{0} + g^{2}\right) > 2\frac{kmg}{Jb\omega_{0}}\frac{1}{n^{4}\omega_{0}^{4}}\left(-n^{4}\omega_{0}^{4}\cos 2\phi_{0} + g^{2}\right)$$

$$n^{2}\omega_{0}^{2} > 2\frac{kmg}{Jb\omega_{0}}$$

$$\frac{bJ}{m} > \frac{2kg}{n^{2}\omega_{0}^{3}}.$$
(3.0.7)

Da Proposição 6 e do raciocínio acima, as raízes de (3.0.5) têm todas parte real negativa se, e somente se, (3.0.7) for satisfeita. Assim, pela Observação 5, esta desigualdade é condição necessária e suficiente para que o ponto de equilíbrio $(\phi_0, 0, \omega_0)$ seja assintóticamente estável e portanto para que a máquina a vapor permaneça estável.

4 Conclusão

Para garantir a estabilidade do sistema máquina-regulador, ajustes dos materiais utilizados na construção da máquina e nas dimensões das partes que a compõem são essenciais. Naquela época, meados do século XIX, em plena revolução industrial não eram raras as seguintes ações:

- Redução do atrito *b* entre as hastes devida ao aperfeiçoamento tecnológico de materiais.
- Aumento da massa m das bolas a fim de obter maior potência da máquina a vapor.
- Diminuição do momento angular para aumentar a velocidade angular ω do eixo da máquina.

Note que estas medidas diminuem o membro esquerdo da desigualdade (3.0.7) o que acarretava muitas vezes na perda de estabilidade da máquina a vapor naquela época. A partir de um desenvolvimento matemático análogo ao apresentado neste trabalho, o engenheiro russo Vichégnadski propôs as seguintes medidas para que a máquina funcionasse perfeitamente:

- Aumentar o coeficiente de atrito das hastes.
- Aumentar o coeficiente de transmissão n.
- Diminuir o fator de proporcionalidade k da ligação do regulador com a válvula.

Referências

- L. C. Barret. Advanced Engeneering Mathematics. McGraw-Hill, Inc., 6th ed, 1995.
- [2] C. Callioli, R. Costa, H. Domingues. *Algebra linear e aplicações*. Editora Atual, 6^a ed, 1995.
- [3] F. Coelho e M. Lourenço. Um curso de Álgebra linear. Editora edusp, 2^a ed, 2001.
- [4] C. I. Doering e A. O. Lopes. Equações Diferenciais Ordinárias. Coleção Matemática Universitária, IMPA, Rio de Janeiro, 2005.
- [5] A. Hurwitz. Über die bedingungen unter welchen eine gleichung nur wurzeln mit negativen reelen besitzt. Mathematische Annalen, 46, 273-280, 1895.
- [6] E. Kreyszig. Advanced Engineering Mathematics. Editora John Wiley & Sons, 9th ed, Singapore, 2006.
- [7] S. Lee. Famílias de polinômios estáveis: teoremas de Routh-Hurwitz e Kharitonov. Dissertação de Mestrado, São Paulo, 2008.
- [8] D. L. Krieder, R. G. Kuller, D. R. Ostberg, F. W. Perkins. An introduction to linear analysis. Editora Addison Wesley, Pub. Co., 1966.
- [9] L. Ponttriaguine. Équations différentielles Ordinaires. Editora MIR, Moscou, 1975.
- [10] J. Sotomayor. Lições de equações diferenciais ordinárias. Projeto Euclides, IMPA, Rio de Janeiro, 1979.
- [11] G. R. Souza. Critério de Hurwitz e estabilidade de equilíbrio. Dissertação de Mestrado, UFMG, 2005.